What should the OSG look like in 2017?

- What value will OSG be providing to the scientific and computing communities?
- What products and services will OSG be providing?
- Which science communities will be using OSG, and in particular which of these are not currently using OSG?
- Who will be providing the computing resources?
- How will the OSG community be working together to advance their goals?

Open Science Grid in 2017

Thomas J. Hacker

Associate Professor, Computer & Information Technology

Co-Leader for Information Technology, NSF George E. Brown Network for Earthquake Engineering Simulation

April 9, 2014

What value will OSG be providing to the scientific and computing communities?

- Continue to foster and build communities at the intersection of domain and computational sciences
- Which science domains would benefit from OSG?
 - Computational (doing this well now)
 - Data Intensive (beyond 'Big Data')
 - · Data collected from sensors in the virtual and physical worlds
- Building community, leveraging efforts to produce synthesis, sharing resources to maximize science return on investment
 - OSG has established a very successful model for how to build and sustain community driven infrastructure
 - Communities outside of Physics would benefit from OSG's expertise and lessons learned

What products and services will OSG be providing?

- Data needs of the science community that need to be addressed today and in the future
 - · Data curation for long-term preservation of data to facilitate reuse
 - Protect and preserve university and community intellectual property
 - How will others be able to cite and reuse data 10 to 15 years from now?
 - Digital Object Identifiers (DOIs) for data
 - · Establish authoritative scientific digital record
 - Support infrastructure for repeatable computational simulation and analysis
 - Verification and validation, and being able to handle uncertainty quantification
- Support the discovery of underlying models from observational and simulation data
 - Inverse models
 - Multi-dimensional uncertainty quantification and reduction of high dimension data to facilitate efficient exploration of high dimensional data
- Need for the preservation of software that can interpret these data
 - Virtual machines is a possible approach
 - Need to be able to run these software, not just archive them

Which science communities will be using OSG, and in particular which of these are not currently using OSG?

Computationally intensive science and engineering disciplines

- Continue to support communities such as high energy Physics
 - High performance / High throughput computing
 - · Effectively use the most powerful computing capabilities

Add capabilities to serve data intensive disciplines

- Tremendous variety and increasing resolution of data from sensors
- Example: Center for Urban Science + Progress at NYU
 - Keynote talk at SC13 about Urban Informatics
- Communities increasing use of high performance / high throughput capabilities
- Communities are large and international in scope

Who will be providing the computing resources?

- Branscomb pyramid
 - Amazon EC2 and cloud providers will likely become a viable alternative at the lower layers of the pyramid
 - Which layer(s) will OSG seek to address?
 - Universities will continue to seek to meet the needs of students, faculty, etc.
 - Universities will likely seek to establish consortiums to minimize costs and spread the risks
- What about Data?
 - Few good institutional models for providing infrastructure for data
 - NEES (today)
 - Over 2M project files and directories from the earthquake engineering community
 - University of Michigan Institutional File System (IFS) project (1990's)
 - "One world, one filesystem"

How will the OSG community be working together to advance their goals?

- OSG has developed effective governance, sharing, and scaling models
- Who?
 - Which domain science and computational communities will the OSG seek to serve?
- Where?
 - National or international?
- What?
 - What kinds of services will the OSG seek to provide?
- When?
 - Over what timeframe will these needs emerge, and when will OSG be able to address them?
- This all leads to how

The OSG in 2017?

Discovery
Unconstrained by
Geography

April 9, 2014 Brooklin Gore

Challenges to Network Adoption

- Causes of performance issues are complicated for users.
- Lack of communication and collaboration between the CIO's office and researchers on campus.
- Lack of IT expertise within a science collaboration or experimental facility
- User's performance expectations are low ("The network is too slow", "I tried it and it didn't work").
- Cultural change is hard ("we've always shipped disks!").
- Scientists want to do science not IT support

The Capability
Gap

ESnet Science Engagement Services

<u>Partnerships</u>

With facilities /
research teams /
providers,
building
foundation for
lasting impact.

Education & Consulting

Webinars, workshops, 1:1 data mobility consultations with scientists, support teams.

Resources & Knowledgeba

Se Reference designs, case studies, papers, FAQs – tailored for multiple audiences.

We built this really complex computing thing. It works! Some scientists are actually using it. - 2009

Citations drop dramatically...everyone just does it this way now...

UCSD Fkw's perspective on OSG in 2017

- On- and off-ramping to/from National CI will be common among major Research Institutions (Universities, National Labs, Foundations)
 - Seemless, policy driven, under the control of the "scientist as enduser"
- Divergence of HTC into heavy CPU (co-processor dominated) and heavy IO (BigData "filtering")
 - Metascheduling of clusters w. co-processor capabilities.
- Everything is less static
 - Allocations & provisioning & placement & access
 - Mixed commercial, public & private infrastructure

4/8/14

OSG in 3 Years

lan Fisk April 9, 2014

Evolving from

- It's the "Open" Science Grid, it sometimes feels we concentrate too much on whether our largest stakeholders are happy
- Maybe it would be OK for OSG to have a unique identity and mission of its own
 - We spend a lot of effort dragging legacy services with us that we designed for LHC ten years ago
 - CE, SE, central Information services, certificates are all in some way deeply flawed. How do we get out?

Evolving to?

- We should be working toward a much less static system. Resources providers and resource consumers should be continuously flowing in and out
 - We have tools for taking the environment (cvmfs + parrot, VMs)
 - We have tools for lighter weight resource provisioning (BOSCO)
 - We have tools to deliver data from a distance (Data Federations over Xrootd)

The Future

- Open Science Grid will continue to be useful but won't grow only by being better for LHC.
 - LHC needs opportunistic computing and has an expected resource growth for a program that lasts 20 more years
- OSG can evolve in influence by being indispensable to many smaller sciences
 - Goals: Need to measure resource registration and application adoption in hours
 - Last year we provided 30M CPU hours over the year. Imagine 100 small sciences, with 1000 core problems, it's 12 days of processing
 - Adoption time should be less than 10% of usage time, so you need to be up in about a day

Emphasis

- Our emphasis should be on
 - Fast and transient resource contribution and provisioning
 - Authentication management
 - Providing data and dynamic storage
- OSG Connect is the right direction, but should be established as the strategic direction of OSG